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Abstract. Gompertz equation, particularly its modified form is widely used to describe growth and product formation
data for various types of dynamically biological systems. In anaerobic digestion, it becomes a fashion to use it as an
empirical representation of biogas/methane/hydrogen accumulation data although its physical meaning is sometimes
obscured. This work outlines the use of Gompertz-type model and its related extensions in more systematic and
meaningful manners. Firstly these time-derivative rate equations were reformulated using unstructured reasoning which
considered the effects of growth associated product formation and two forms of time-rate derivatives: Schnute postulate
and Power law extension. The analysis revealed that this class of models predict non-zero product formation at zero time.
Thus we propose their corrected forms to be used for meaningful parameter estimation. Secondly, we compiled currently
available solutions for most popular Monod-type models for batch digestion. Some solutions were derived in this article
and put in convenient forms for “Gompertz-Monod matching”.  Finally, we attempt to draw relations between time-
derivative-type models (Gompertz model and its extensions) with substrate-limiting-type models (Monod, Andrews,
Haldane, Contois and Grue 2-order models) and establish criteria to justify the validity of theses models in specific cases.
The results in our analysis suggested that much more insightful mechanistic understanding of anaerobic digestion could
be achieved by combined and systematic analysis of those experimental data using the best model from extended
Gompertz models with the best one from substrate limiting type

INTRODUCTION

In determining biochemical methane potential (BMP), which is widely used to evaluate the anaerobic
biodegradability of organic waste or wastewater [1, 2, 4-8], batch anaerobic digestion experiments are carried out
and essential data, particularly accumulated biogas produced versus time, are collected. It is customary to use some
form of kinetic or empirical models to describe the data and estimate the BMP from models' parameters. Recently, a
modified form of Gompertz equation has been used very often for the task. It has the following form.

P=P, exp|—exp((R,-e/P,)(A—t)+1)| (D

Where P, P, are accumulated methane at time t and its long time values respectively. R, is maximum
specific methane production rate (ml/d), A is lag phase period (d) and e is 2.178282. This is equivalent to the
original form of Gompertz equation.

P=P, exp|—(ry/a)exp(—at)| )

Where r, and o are parameters in Gompertz equation which directly related to R,, and A in equation (1) [3].

Gompertz equations has been popular because of a few reasons. Firstly it requires only the accumulated biogas
data. Secondly, it provides easily interpretable parameters, namely: the biogas yield potential P, the maximum
biogas production rate R,,, and the duration of lag phase A. Thirdly, in general it can be adjusted to fit
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accumulated data so well. However the problem with Gompertz model is that it was formulated for describing the
growth of tumor cells or later for the microbial growth without direct relation to biogas or other kinds of
accumulated product data, thus lacking a sound derivation. However, because it seems to fit the biogas/CH4/H,-time
data for batch anaerobic digestion very well, it is now widely used as an empirical model for estimating and
comparing BMP as well as the rate of biogas production.

Monod-type models, on the other hand, were derived based on mechanistic considerations similar to
Mechaelis-Menten-type models which is widely used in enzyme kinetic studies. In fact this group of model has been
well accepted and established in microbial kinetics and form a core basis of the Anaerobic Digestion Model no. 1
(ADM1) which considered a standard model for anaerobic digestion. They offer more insight and suitable for
process-design proposes.

However, a major drawback of Monod-type models, even in a simplest form, is that their analytical solutions
are implicit in term of substrate concentration S and biomass concentration X which make them difficult to apply
and complicate the parameter estimation. The non-linearity nature of the solutions also requires iterative methods to
reach the minimum error sum square. The convergence is guaranty only with accurate initial estimates. [11]

Recently, Alt and Markov [12] proposed alternatives to Monod-type models using an analogy with Henri-
Michaelis-Menten enzyme kinetics. The model formulation give similar result as the corresponding Monod's
counterparts with less mathematical complexity. However, these models are not yet widely used and normally
require numerical methods except in a simple cases where analytical solutions are available.

This work focuses on the reformulation of Gompertz model as well as its more generalized forms namely
Schnute and Power law rate model in the context of biogas production. We also attempted to bridge the Gompertz-
type models on one side and a Monod-type models on the other side. By combining this two approaches together we
aim to extract maximum benefits and meaning from both approaches in describing biogas production data, so paving
the way for the researchers in designing biogas production experiments which result in not only easily interpretive
parameters but also with more mechanistic meaning offered by Monod-type models.

MODEL DEVELOPMENT AND ANALYSIS

Reformulation and Extending the Gompertz-type Models
Schnute's postulates and the unified equation for product formation in batch digestion
Schnute [9] proposed an accelerated growth model for explaining the growth of fish population by imposing the

following assumptions.
1. The relative growth rate, r, of a population with density, N, was given by

(1/N|ldN/dt)=r 3)
2. The the derivative of relative growth rate, dr/dt changes linearly with time in the following form,
\1/r|(dr/dt)=—|a+pr) 4)

Here, the parameter a is a fixed changing rate of r , and a/B is the scale of relative rate change. Schnute
model is actually a generalized form of a class of growth model which includes exponential model (a<0,8=1) ,
logistic model (a> 0, = —1J, Gompertz model (a>0,8=0/, Richards model |a>0,3<0/ and others [3].

Because Gompertz/Schnute models were developed from quite different contexts, they are not easy to interpret
in a meaningful manner except being treated as empirical models to represent the biogas/biomethane/H, datasets.
Thus, in this article we propose a new reformulation which directly based on the time rate of product formation. In
addition, the resulting solutions can be applied to not only for batch anaerobic digestion experiments but also for
similar classes of fermentation studies.

Assuming that the biogas generation is purely growth-associated with constant biomass and product yield
coefficients Y ,.;=AX'/AS=const and Y,;=AP/AS=const from Schnute's postulates, we obtain

dP'/dt=rP', drldt=—r(a+pr) (5)
Where X', P', r, o and [3 are biomass and product generated (partially unobservable), the specific product
forming rate, and the Schnute parameters respectively. The second part of equation (5) is readily integrated to obtain
the expression for r and upon substituting it into the first expression in equation (5) we have

r:rol[em+([3r0) e~ 1)/(1], dP'/dt=rP'=r, P'/[e‘”+([3r0) e — 1)/(1] (6)
After integration, the following solutions result
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P’:P'OOef(“/'i(e‘“—y\}l/'3 where P',=P' [1—y|"" and y=pr,/(a+pr,) (7

Or in a modified form as derived by Zwietering et. al. [3]

P'=(R,(1-p)/a/[(1-pexp(1—p+a(r—t))/(1-p)" (8)
However P'; is not observed because it exists prior to the batch experiments as a result of the microbial growth
and tightly associated with the initial cell concentration X, (assuming no microbial death) or P' =Y 'z 4. X,.
Thus equation (5) must be corrected for P', Thatis

P=p—py=p e e -y | "~ (1-y]"] ©)
Where P is actual observed product accumulation. It should be noticed that neither  P';, nor

P'_(=P_+P'y) isfully observable but it can be treated as a parameter in non-linear curve-fitting.

Gompertz Model: a Simple Analysis

Although Gompertz model is a special case of Schnute model, deriving the solution for Gompertz model from
equation (7) is awkward because of the singularity when p->0. So we need to start a flash formulation by
setting =0 in equation (5), which finally the following set of solutions are obtained.

P'=P' exp|—(r,/a)exp(—at)] and r=ryexp(—at) (10)
Clearly, P', and P', canbe found by setting t=0 and t=co0 in equation (10)and we obtain.
P';=P'.exp|-ry/a| and P',=P'expry/al (11)
Or in a modified form
P':P'wexp[—exp[(Rm-e/P'w)(k—t)+1)] (12)

Where P', P', are accumulated product at time ¢ and its long time values respectively. R, is maximum
specific product formation rate (ml/d), A is lag phase period and e is 2.178282. It must be emphasized that
P', P’ are partly unobserved, strictly speaking it is not equivalent to the observed accumulated product
formation P, P, butthey are related through the relation P=P'—P';. Both forms are identical and
A=[In(ry/a)-1]/a, R,=P',[In(ry/a)-1]/(e}) (13)
Since both Schnute and Gompertz models are formulated and solved in a similar way, P', and P', are
not directly observable experimentally as discussed previously. In practice the corrected forms suitable for fitting
experimental product formation from biogas/biomethane/H, batch data are.
P=P'-P',=P 'w[exp(—exp[(Rm-e)()\—t)/Pw+ 1))—exp(—exp((Rm7\-e)/P;o+ 1)” (14)
or based on the original form.
P=pP'-P',=P 'w{exp(—(ro/a)exp(—oct))—exp(—ro/(xH (15)
In comparison, and with strict correctness, it is recommended to do curve-fitting using equation (15) to estimate
ro and P¥. Then A and R,, are calculated from equation (13). Until currently the normal practice is to
ignore P';, and most researchers use Gompertz model without any correction or perhaps they were not aware of
the implicit assumption of the models. The fact that both equation (10) and (12) have no explicit P', in them, so
it may be ignored unintentionally. However, if we are not so serious about this minor theoretical discrepancy, it is
generally fine to treat Gompertz and Schnute models as empirical representation of batch data.

Power Law Extension of Gompertz Equation

One can consider Schnute model as a linear extension of Gompertz model, but it is not the only possible
extension. In the following section we will explore the so-called “Power Law Extension of Gompertz Equation”,
which starts by the following differential equations.

dp'/dt=rP', dr/dt=—or"" (16)
Integrating the second equation in (16), we have

r:ro(an8t+1)7”n (17)
Substituting equation (17) into the first equation in (16), the solutions of four cases are as follow
Case 1: n=0 In this case we have the Gompertz model which was discussed in previous section.
Case2: 0O<n<l We have the following solution.
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(n—1)/n

P'=Pexp(C(1—(anrgt+1)""™)) where CT=r,/[ary(1—n)] (18)
Clearly,as t20, wehave P'P’', andas t>w, P'=P' . Thatis P',=P'yexp(C)
Case3: n=1 we have

P'=P'(at+1)"" (19)
In this case, t->0, wehave P'->P',, andas t=>o, P'=co. So thisisnot valid for batch digestion.
Case 4: n>1 We obtain the same solution as equation (18). However, this solution is also not valid because as
t>o, P'=ow. This is not realizable because the product would increase infinitely while substrate is bounded.
Thus we can conclude the for the Power law extension of Gompertz model, the only realizable range of n

for batch digestion is 0<n<1. So all subsequent development will be restricted to this range of n. Now we
will turn to Monod-type model development.

Adapting Monod-type Models for Anaerobic Digestion

In this section we will derive specific solutions of some popular Monod-type models based on the recent
progress of model solutions of Monod-type kinetics for batch bio-reactions as given in a few authors [12,13]. The
main purpose of this section is to prepare specific solutions for Gompertz-Monod parameter matching in the
subsequent sections. Only two detail developments (traditional Monod kinetics and Monod kinetics with constant
microbial concentration) will be elaborated here. However, some solutions of more complicated Monod-type
kinetics are derived here and summarized in Table 1 without detailed solution steps.

Traditional Monod kinetics with and without microbial death

A classical and most widely used approach in describing growth and product kinetics is due to Monod [10,11]
and its various modified forms. The basic formulation, taking into account microbial death, is as follows.

dX'/dt=uX=u,SX/(Ks+S) (20)
dx/dt=(u—k,) X:[MmS/(Ks"'S)_kd]X:lum(so YPS_P)/[(Ks*'So)YPS_P]_kd}X 21
Here prime notation in X' denotes the total accumulated microbial growth assuming no death. u,, w are
maximum and general specific growth rate, k, is specific death rate and K is the saturation constant. If we

assume that all yield coefficients are constant. Using the definitions Yps=AP/AS, Yys=AX'IAS,
Ypx =AP/AX=Y /Yy, andnotingthat P')/Y,=X'/Y,, theratechanges ofsubstrate and product can

be written as follows

dS/de=—(1/Y,)(dX '/dt)=—(u/Y , ) X=—(1/Y ; Ju,S X/(Ks+S) (22)
dp ds WiS o Yo w,(P,—P)
d —=Y,.—=Y .uX=Y .. X= 23
an dt PS dt PX w PX K5+S YX'S KS Yp5+Pm_P ( )
Ingeneral X'#X and X mustbe found as a functionof S by the following integral.
X S
dX1dS=Y (k,Ju—1] » [ dx=[_ v, ](k,Iu,)(Ks+S)/S—1|ds (24)
Or sometimes it is more convenient to find the X as a function of P
dP Yx‘s( kd) X P Yx‘s kd KgYps+P.,—P
g 1—-—| » X = R Mt L 17 )
dS Yy w f %, f 0 Y b Ym P _—P d 25)
The result is the cell biomass X  as a function of a limiting substrate concentration S or product P
X(8)=X (Y y /1) [k KsIn S/ S5) =(1,—ky) (S =S| (26)
or X(P):XO"'(YX'S/Mm)Idesln[(Poo_P)/Pm]'*'(l*m_kd)(P/Yps)J (27)

Until now there is no explicit solution for S and X in term of time ¢ given as a solution of equation (21),
(22) and (23). However in simple cases, closed-formed implicit solution (or explicit in term of ¢ ) can be found by
the following integration after substituting X (S) and X(P) from equation (26) and (27) into (28) to obtain
e Fes K ) 1 el Y (K| 1
5 Fn X(8) 70 Yogu, | P.=P " [X(P)

+1 dp (28)

S
In general this requires numerical integration except some simple cases of which a few of them are presented in
Table 1. Solutions of Andrew and Heldane kinetics in terms of S were obtained from Alt and Morkov [12]
whereas the rests are derived or extended here.
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Andrew and Heldane equations are two forms of Monod-type kinetics which take substrate inhibition into
consideration. Other more complicated forms or those with death term are not considered here and numerical
methods are generally more appropriate for those cases.

Monod-type kinetics with constant cell density

In the determination of BMP, if the cell density is high enough such that occurs in the upflow anaerobic sludge
blanket reactor (UASB), the cell biomass may appear approximately constant during the anaerobic process
(dX/dt=0, X=X,) .Assuming constant biomass yield coefficient and product yield coefficients, we have

as__ 1 _ u, X, S S w, X, u, P’

d Y T Ty Kes T Kk s Where K=y =y 29)
Integrating equation (28), after substituting S=S;—P/Y 5, P,=S,Yps, Xo/Ys=P'o/Y,s we obtain
t=(1/K,)|KIn[S,/S|+S,—S|=(1/K,)[KsIn[P_/(P,— P)|+P/Y ] (30)
Or in explicit forms for S and P
S=KW|(Sy/Ks)exp|(1/Kg)(—K,t+S,)|| (31)
and P=P,—KY pW|[P/(KY p)]exp—(1/ K¢)(K,t—P /Y )| (32)

Here W(t) is Lambert W function. Notice that if biomass changes with time we can not find explicit solution for

S and P as a function of ¢. Even the biomass is constant with time, only simple cases that explicit
solution can be found. For convenient, all solutions in Table 1 were formed in such a way that either S or P is
used as independent variable for each solution.

TABLE 1 (Cont). solutions of popular Monod-type models with no microbial death expressed interms of S and P.

Kinetic functions Solutions
i P P,
Any model.w1th X=Xog+Y 4 5(So—S) =Xo+(Yys/Yps)P, S=S;———,8;=—2, Yys=Yy 33)
constant yield Yps Yps
i X X P' +P, ! X, P’
coefﬁc1epts and no P=Y,,(S,~S), C=—L+5,= 0 + P _F o _pP', Ao _F o (34)
microbial death Yxs Yxis Yops Yps Yps Yxs Yps
Monod kinetics 1| Ky [S,(C=S) Cc-§ 1 | K.Y, p_P',+P P',+P
S t=p| = In +In =1 —1In = - - (35)
N e m| C |S(C-5,) C-5, m| P’ P,—P P, P,
* Constant biomass
Y S Y . .
t=—2 | KyIn| 22 |+§,—S|=—2=2 Kslﬂ( P. |, P | Wis Lambert W function (36)
M Xy S W, P P—P] Yy
_ So 1 _ Pl L o Pe
S—KSW(KSeXp Ks( K,t+S,)||, P=P,—K/ Y, W KSYPSexp KS(Klt Yps)) (37)
Andrew kinetics 1| Ks. [S,(C=S) C c-S\| 1
S 0
t=g—| —=In|———= |+ 1+—|1 +—(S— 38
=, —— S W c Ms(c=s,) | Tk, c—so) K, (55 (38)
m 2
K+S+S°/K, Ky P ap prap
Wt ' "Wt
t:uL S'PSln( P, |1+ P )ln |- P 39)
m| P', P,—P P, K,Y P, K,Y
Constant biomass
Yy Sy (Sg_sz) Y s ( P ) P-P,P P
t= K. n|—= |+ +S,—S|= KIn |- 2 p— 40
W, Xo[ °LS 2K, 0 WP’ * PP 2K Yrs Yo (40)
Heldane kinetics 1K [S,(C-5) C+K c-s) 1
S 0 S
=] —21 + 1+ 1 +—(S— 41
= W, S W c "s(c-s,) K, “(c—s0 K,(S Sol (1)
(Ks+S)(1+S/K,) Ky b ap K P ap
"ot ' ot
= | Bty |_Pe PP fy, Pl Koy, | PotP) P (42)
Wnl P P.+P P', K,Y,s K, P’ K,Y
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TABLE 1 (Cont). solutions of popular Monod-type models with no microbial death expressed interms of S and P.
Kinetic functions Solutions
Constant biomass
2_ 2 2
= s K,ln S +M+ 1+ K (Sy=S)|= Yes Kn P, )7P PP |, Ks| P (43)
W X, 2K, K, W, Py P.—P| 2K,Y K, Y ps
Contois kinetics Y S C-=5S Y P P' +P
XS 0 XS 0 0
n=u S t:M_m KClIl ? +In c-s, :W Kcln PP +In P, (44)
"K X+S .
Constant biomass
YXS SO YPS P P
t= Kc Xoln|—|+S,—S|= K.-X.1 S I 45
W, X ctolh S ’ L ol P,—P] Yp 45)
S SoY i —Xou, t . .
S:SO—L:KCX0 W|—"-exp| 22" || W is Lambert W function (46)
YPS KC XO KCXOYXS
Grau 2-order S: - 2 Y Y
o So (11,1, s(c-s) _[P. ) 1 e Yes| 1[_ P, 47
model K,.C|S S, C |5,(C-=S,)|| \Y,| KsC\P_—P P_| C\P —P
ds S\ .
——=k X | = Constant biomass
dt S S, (S S
0 0 0
t= 20 q], S=—0— 4
KSXO( 5 ) K. X,t+S, (48)

Gompertz-Monod Matching

There are many ways to convert Gompertz parameters into Monod-type parameters. One obvious choice is to equate
dP/dt from Gompertz equation to Monod equation as follows.
For Gompertz model:
dP'/dt=d(P+P',)/dt=dP/dt=r,e “'P'=r,e “(P+P",) (49)
For Monod model without microbial death:
Using basic relations: X (P)=X,+P/Y,; and P',=X,Y,,

S SoY ps—P P, —P
d_P:YpX Mm X: Mm( 0~ PS ) (XO YPX+P): Mm( © ) (P ,0+ P) (50)
dt K¢+S K, Yp+S,Yps—P K.Y, +P,—P
Equating equation (49) to (50) we have
roe” ‘=, (P.—P)/[K,Y ps+P,—P] (51)

Normally, from the analysis of batch digestion data using Gompertz equation, r,, o, S,, Y,s and P_ are
obtained. So in equation (51) only uw, and K are to be estimated. Apparently this can be done easily by using
to initial condition (t=0) and long-term limiting condition (t-o0). For initial condition t=0, we have

o=ty P/(KY ps+P,) or w,=(ry/P,)(KsYps+P.,) (52)

However when applying the long-term limiting condition (tc), it simply reveals that 0=0 and no new
information to be used in solving equation (51) for u, and K. To tackle this problem let us specify the time
at which the product formation is that of 95% of ultimate value P_. Thatis P=0.95P,. Then we have

e ““*=[0.05u, P ]/[K,Y+0.05P_] (53)
Substituting equation (52) for W, into (53) and solving for K, the following solution is obtained.
Ks:Poo(1_exp(ato.ss))/(Yps(exp(ato.Qs)_Zo)) (54)

where t,gs=—(1/a)In[(a/ry)In(P_/P)]  tys=—(1/a)In[(c/ry)In(P,exp(r,/a)/(Pexp(r,/a)+P,))] for
original and modified Gompertz models and for corrected Gompertz model respectively.
Alternatively, we can write for the relation t=—(1/a)In[(a/r,)In(P_/P)] and equation (36), that is
t=—(1/a)In{(et/ry)In(P,/P)|=(1/K,) [K,In(P,/(P,—P))+P/Y x] (55)
If a, ry, Py, u, and Y., are known and we choose to specify two matching points, say P, and P,
lying between 0 and P_, we can solve two linear equations and obtain the K, and K, from the following
relations
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K t,(P1Y ,)—t,(P,/Y )
s tZIH((Poo_Pl)/Poc)_tlln((Pw_PZ)/Poc
In the following illustration of this matching technique (Table 2), we chose P,=0.5P, and P,=099P,.

This choice seems arbitrary, but it came up from the authors' experiences and it fitted satisfactory with our current
data, albeit was not well optimized.

K.=(1/¢ )| F1 Kl(PW_Pl) 56
)) 1—( tl)Y__ sin (56)

PS p

©

APPLICATIONS OF REFORMULATED GOMPERTZ-TYPE MODELS, MONOD-TYPE MODEL AND
GOMPERTZ-MONOD MATCHING

We illustrate the application of the theoretical development in this article by using two sets of data obtained
from two batches of anaerobic digestion of palm-oil-mill effluent (POME) carried out in our laboratory [14].
The batch digestion experiments used granules obtained of an industrial-scaled biogas plant. In the first experiment,
the initial COD was 100,000 mg/1 ( 14,946 mg digestible COD/I) whereas in the second one, the initial COD was
25,000 mg/l ( 20,825 mg digestible COD/1). This will illustrate not only show how to apply the theories for
Gompertz and Monod models but also to observe the effect of substrate inhibition at high initial COD. More results,
particularly the goodness of fit (by non-linear optimization technique provided in QtiPlot) for Gompertz-type
models, can be found in the work published by Jijai et.al. [14]. In most case of their results, biomass concentration
was approximately constant due to high cell density attached inside the granules

TABLE 2 Gompertz and Monod variables and parameters of two datasets from batch anaerobic digestion of POME

Models Parameters 100% POME 25% POME +water
General parameters Initial COD (gl™) 100.0 25.0
s, (mgl? 14,946 20,825
P, (ml) 365.0 621.3
Y, (ml/(mglh)) 0.0243 0.0298
Gompertz equation ro (dh 1.3851 0.4120
a (dh 0.5225 0.1280
P=P' exp|—(r,/a)exp(—at)| or A (d) -0.0482 1.317
P:P’wexp[—exp((Rm~e/P’w)(}\—t)+1” R, (mld") 70.089 29.27
‘ : R 0.9877 0.9906
Corrected Gompertz equation ro (dh 1.0313 0.2439
a (d) 0.5032 0.1065
P=P’w[(—(rola)exp(—at)]—exp(—rola]] P, (ml) 53.90 73.31
p', (ml) 418.5 724.8
R? 0.9937 0.992
Monod kinetics K, (mgl'd" 5640 962
_ Yy P, p K, (mglh 9454 5570
t= w, P ,O{Ksln( PP + Y, w, (d" 2.543 0.40
R 0.9864 0.9924
Monod kinetics: estimated from K, (mgl'd") 5470 1408
Gompertz-Monod matching Ks (mglh) 9452 9249
w, (d 2.466 0.58

It is not surprised that all Gompertz-type models can fit most datasets comparatively well (not shown here,
please refer to Jijai et.al. [14] ). It was noticed that for Gompertz and Schnute models, non-linear fitting converged
much easier than that of the Power law extension although the later is more flexible because one more parameter

(n) 1is available. However, the Power-law model required good initial guess for its parameters otherwise it did
not converge and gave incorrect results. In Table 2 we show only the parameters and goodness-of-fit for Gompertz
model because they will be used for our illustration. It is recommended that the corrected forms of Gompertz-type
equations should be used because it has less ambiguity in the interpretation of results as well as give a reasonable
estimate for P',.
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Besides the best estimates (by non-linear regression) of Gompertz and Monod parameters for two datasets,
Table 2 also presents the results of Gompertz-Monod matching technique which is quite close to the corresponding
best estimates (K and u,). This shows the potential of this new approach although more comprehensive and
analytical work should be carried out before any definite conclusion can be made.

CONCLUSIONS

So far we have achieved five development tasks. Firstly, we have successfully reformulated the Schnute and
Gompertz models in terms of product formation. Secondly, we have obtained the corrected solution of Schnute and
Gompertz equations which take the initial states of batch digestion into consideration. Thirdly, the solution of new
Power law extension of Gompertz equation is obtained with a valid range of n, 0<n<1. Fourthly, we
provides implicit (and sometimes explicit) solutions of most popular Monod-type equations in terms of not only
substrate concentration (S) but also in terms of product-accumulation (P). The later form of solutions
provides more convenient way for parameter estimation and converting them into Monod parameters. And lastly, we
showed the fundamental relationship between Gompertz and Monod kinetics which revealed a possibility of
parameter-matching. That is, from experimental data encapsulated in terms of Gompertz parameters, we can convert
them into Monod parameters which has more interpretive power and more useful for the purpose of design and
operation of biogas plants.

In conclusion, Gompertz-type and Monod-type models can be used together to facilitate parameter estimation
and obtain better mechanistic insight from batch anaerobic process. Now, there is a new approach called “Gompertz-
Monod matching” to convert large amount of anaerobic digestion datasets into design parameters. However, it is
too early to establish the best practice for this new approach and needs further investigation.
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