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Abstract
Eco-friendly natural pigment demand has ever-increasing popularity due to health and environmental concerns. In this con-
text, the aim of this study was to evaluate the feasibility use of Saba banana peel as low-cost fermentable substrate for the 
production of pigments, xylanase and cellulase enzymes by Monascus purpureus. Among the strains tested, M. purpureus 
TISTR 3385 produced pigments better and had higher enzyme activities. Under the optimal pigment-producing conditions 
at the initial moisture content of 40% and initial pH of 6.0, the pigments comprising yellow, orange, and red produced by the 
fungi were achieved in the range of 0.40–0.93 UA/g/day. The maximum xylanase and cellulase activities of 8.92 ± 0.46 U/g 
and 4.72 ± 0.04 U/g were also obtained, respectively. More importantly, solid-state fermentation of non-sterile peel could 
be achieved without sacrificing the production of the pigments and both enzymes. These indicated the potential use of the 
peel as fermentable feedstock for pigment production by the fungi and an environmental-friendly approach for sustainable 
waste management and industrial pigment and enzyme application.

Keywords Banana peel · Pigment · Monascus purpureus · Solid-state fermentation

Introduction

In recent decades, the global market demand for eco-friendly 
natural pigments has gradually increased due to health 
concerns over artificial pigments [1]. Natural pigments 
are derived from plants and microbes; however, microbial 
pigments have numerous advantages over plant pigments 
due to their fast growth, as well as season-independent and 
substrate-dependent cost effectiveness [2]. In Asian coun-
tries, industrial production of natural-based pigment is 
dominated by the Monascus genus, [3] and their pigments 
have been broadly applied in the food industry worldwide 
[4]. Monascus pigments are secondary metabolites involving 

red (monascorubramine and rubropunctamine), orange 
(monascorubin and rubropunctatin), and yellow (ankaflavin 
and monascin) substances. Red and yellow pigments have 
been extensively used as food coloring agents in the form 
of koji and Anka [3]. Nevertheless, the high production cost 
of microbial pigments compared to artificial ones is a major 
obstacle preventing the industrial implementation of pig-
ment production through fermentation. Numerous investiga-
tions have also been performed to reduce costs and increase 
the production of pigments [5]. Recently, many agro-indus-
trial by-products and residues have shown their potential 
in the pigment production by the Monascus genus, such as 
sugar bagasse hydrolysate [6], orange processing waste [3], 
rice straw hydrolysate [4], corn bran [7], and potato pomace 
[8]. Furthermore, the production of pigments produced by 
the Monascus species is greatly influenced by the condition 
factors, such as carbon and nitrogen source, pH, temperature, 
moisture, aeration, and agitation. Additionally, optimization 
is a crucial process in order to maximize productivity [9]. 
Moreover, some Monascus sp. can produce enzymes simul-
taneously with the pigments, such as amylase, xylanase cel-
lulase, and β-glucosidase [10]. Nonetheless, there have been 
few scientific reports available for the production of xylanase 
and cellulase by the Monascus species.
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Saba banana (Musa “saba” (Musa acuminata × Musa bal-
bisiana)) is one of the most popular varieties among the vari-
ous banana cultivars in countries in Southeast Asia, such as 
Thailand, Malaysia, Indonesia, Vietnam, and the Philippines, 
as it is considered to have good potential for commercial pro-
duction and trade in the domestic market [11]. In general, the 
ripe fruit can be consumed raw and also processed into various 
food products, such as ketchup, sauces, and chips [12]. Due 
to banana processing, industrial development, and increased 
production of fruit products, large amounts of banana peel, 
accounting for 40% of the total weight of the fresh fruit, are 
discarded as waste or used as animal feed [13]. However, these 
are uneconomic and not environmentally friendly approaches 
[14]. Since huge amounts of carbohydrates, including cellu-
loses, hemicelluloses, starch, pectin, etc. are presented in the 
peel, it could be applied as a renewable feedstock for the pro-
duction of pigments and enzymes [15].

This study aimed to evaluate the potential use of Saba 
banana peel for low-cost production of pigments of xylanase 
and cellulase enzymes. Two Monascus genera, Monascus 
purpureus TISTR 3385 and Monascus purpureus TISTR 
3615, were cultivated on the waste and screened for their 
abilities to produce pigments as well as present the activities 
of the xylanase and cellulase enzymes. Several fermentation 
parameters, including moisture and pH, were optimized to 
increase the production of the pigments and both enzymes 
by the selected strain. Finally, the performance using non-
sterile Saba banana peel was investigated for cost-effective 
pigment and enzyme production.

Materials and methods

Microorganisms and seed preparation

Two fungi, M. purpureus TISTR 3385 and M. purpureus 
TISTR 3615, obtained from the Thailand Institute of Scien-
tific and Technology Research, Bangkok, Thailand (TISTR), 
were cultivated in 250 mL-Erlenmeyer flasks containing 
50 mL of Potato Dextrose Broth (PDB) at room tempera-
ture (30 ± 2 °C) on a rotary shaker at 180 rpm for 5 days. 
After that, they were transferred to a Potato Dextrose Agar 
(PDA) slant and further incubated for 7 days. Then 5 mL of 
sterilized distilled water containing 0.01% (v/v) Tween 80 
was added to each tube, and the surface was scraped with an 
inoculation loop. Afterwards, the spore was counted using 
a Neubauer hemacytometer and adjusted to the initial spore 
number of  106 spores/mL.

Raw material and its composition

Saba banana (Musa acuminata × balbisiana) peels (SBP) 
were collected from a local plant under the network of 

the Yala Saba banana enterprise community. The char-
acteristics of SBP were as follows: diameter 3–4 cm, wet 
weight 50–53 g, and fruit age < 2 months. The peels were 
washed and cut (approximately 0.5 cm) and further dried at 
60 ± 2 °C for 24 h. After that, the peels were ground using a 
conventional kitchen blender and then separated using sieves 
(2–4 mm). The composition of SBP after drying was as fol-
lows: lignin 25.80 ± 0.13%, hemicellulose 19.24 ± 0.03%, 
cellulose 18.36 ± 0.22%, total nitrogen (TKN) 0.92 ± 0.01%, 
carbon to nitrogen ratio (C/N ratio) 44.26 ± 0.02, and pH 
5.37 ± 0.48.

Culture condition

The cultures were carried out in a 250 mL wide-mouth 
cylindrical bottle containing 50 g of SBP dry mill. The waste 
medium was sterilized by autoclaving before use at a tem-
perature of 121 °C for 20 m. The cultures were initiated with 
10% of spore suspension (approximately  106 spores/mL). 
Subsequently, the moisture was adjusted by adding sterilized 
distilled water, and mixed well. The cultures were incubated 
at room temperature (30 ± 2 °C) for 10 days. The effect of 
the initial moisture was evaluated by varying at 40% (v/w), 
50% (v/w), and 60% (v/w), respectively by adding sterilized 
distilled water at a pH of 6.0. The effect of the initial pH was 
evaluated by varying the sterilized distilled water at a pH of 
5.0, 6.0, and 7.0, respectively. The effect of the sterile and 
non-sterile BSP was carried out under the optimal initial 
moisture and initial pH.

Analytical methods

The fungal spores were counted using a Neubauer hemacy-
tometer to control the number of initial spores as described 
by the classical procedure [16]. To extract the pigment, the 
fermented SBP (1 g) was added with 5 mL of 70% (v/v) 
ethanol solution and mixed at room temperature (30 ± 2 °C) 
on a rotary shaker at 180 rpm for 1 h. The extracted pig-
ment supernatant was recovered by centrifugation (Z36HK 
HERMLE, Germany) at 15,259 × g for 20 m. Subsequently, 
the pigment was estimated by measuring the absorbance of 
the supernatant with a UV/VIS spectrophotometer (UV7 
METTLER TOLEDO, USA) at different wavelengths of 
400, 475, and 500 nm for yellow, orange, and red, respec-
tively [3]. The cellulase activity was determined by a filter 
paper assay as described by Yu et al. [17]. The xylanase 
activity was measured according to the procedure of Kat-
simpouras et al. [18] with modification. The amount of 
the reducing sugars was measured by the DNS method as 
described by Miller [19]. The experiments were carried out 
in triplicate. One-way ANOVA (analysis of variance) and 



95Brazilian Journal of Microbiology (2023) 54:93–102 

1 3

Duncan’s multiple range tests (P < 0.05) were applied to 
evaluate the statistical significance of the results (SPSS ver-
sion 22.0 software, obtained from the Bioprocess Engineer-
ing Laboratory Faculty of Agro-Industry, Prince of Songkla 
University).

Results and discussion

Cultivation of Monascus purpureus

Pigments, involving polyketide derivatives and second-
ary metabolites, produced by Monascus sp. were strongly 
strain-dependent but independent of their sexual status 
(teleomorphous or anamorphous) even under the same 
physical and chemical growth conditions [20–22]. Since 
banana peels are lignocellulosic materials mainly contain-
ing lignin, hemicellulose, and cellulose, the waste could be 
effectively degraded into simple sugar forms by secreting 
lignocellulose-degrading enzymes produced by the fungi 
[23, 24]. In this study, M. purpureus TISTR 3385 and M. 
purpureus TISTR 3615 were cultivated on an SBP dry mill 
with 40% initial moisture and pH of 6.0 and screened for the 
abilities to produce pigments and represent the activities of 
the xylanase and cellulase enzymes. Three types of pigment 
and activities of xylanase and cellulase of two M. purpureus 
cultivated on the SBP dry mill were compared (Fig. 1 and 
Table 1). Similarly, their pigment production continued for 
7 days and declined at 10 days (Fig. 1). The decrease in 
pigments was due to their decomposition or transformation 
into other metabolites during the decline phase [25]. Yel-
low pigment was the most predominant produced, followed 
by the orange and red pigments, respectively (Fig. 1). The 
dominance of the yellow pigment was due to the reduction 
of the orange pigment to the yellow pigment ankaflavin from 
monascorubrin by the ammonia reaction between the orange 
pigment and amino acid [26, 27]. In the case of M. ruber 
CGMCC 10910, a high carbon source or high glucose stress 
but low oxidoreduction potential increased the production 

of the yellow pigment [28, 29]. Regarding the lignocellu-
lose-degrading enzymes, the presence of both the xylanase 
and cellulase activities was different. M. purpureus TISTR 
3385 provided high activities of xylanase and cellulase, and 
continued to be stable for 7 days, while both activities pro-
duced by M. purpureus TISTR 3615 were presented at a 
low level and slowly continued to the end of the fermenta-
tion (Fig. 1). Among the two strains tested, M. purpureus 
TISTR 3385 produced pigments and presented the activi-
ties of both enzymes better. The highest pigment production 
obtained at 7 days was 6.51 ± 1.63 UA/g, 4.27 ± 1.60 UA/g, 
and 3.37 ± 1.10 UA/g for yellow, orange, and red, respec-
tively, which corresponded to their high productivity in the 
range of 0.48–0.93 UA/g/d (Fig. 1 and Table 1). Likewise, 

Fig. 1  Pigment production, 
the xylanase and cellulase 
activities by the two strains: M. 
purpureus TISTR 3385 (a) and 
M. purpureus TISTR 3615 (b), 
cultivated on an SBP dry mill 
at 40% of initial moisture and 
initial pH of 6.0. The data are 
presented as the mean of tripli-
cation and standard deviation

Table 1  Pigment productivity in various conditions

All data are the data at 7 days. The data are presented as the mean of 
triplication and standard deviation,  and different letters in the same 
column indicate a significant difference (P < 0.05).
PY, yellow pigment productivity; PO, orange pigment productivity; 
PR, red pigment productivity; UA/g/d, unit of absorbance per gram 
substrate per day.

Conditions PY
(UA/g/d)

PO
(UA/g/d)

PR
(UA/g/d)

Strains
TISTR 3385 0.931 ± 0.233a 0.467 ± 0.229a 0.421 ± 0.157a

TISTR 3615 0.841 ± 0.074b 0.276 ± 0.033b 0.226 ± 0.028b

Moisture
40% 0.929 ± 0.068a 0.472 ± 0.022a 0.354 ± 0.014a

50% 0.604 ± 0.005b 0.280 ± 0.013b 0.224 ± 0.039b

60% 0.545 ± 0.011b 0.229 ± 0.004b 0.206 ± 0.053b

pH
5.0 0.692 ± 0.001b 0.324 ± 0.017b 0.267 ± 0.016b

6.0 0.929 ± 0.048a 0.473 ± 0.067a 0.377 ± 0.013a

7.0 0.763 ± 0.064b 0.384 ± 0.020b 0.218 ± 0.010b

SBP
Sterile SBP 0.931 ± 0.025a 0.471 ± 0.012a 0.399 ± 0.003a

Non-sterile SBP 0.859 ± 0.016a 0.438 ± 0.004a 0.385 ± 0.001a
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the highest xylanase and cellulase activities obtained at 
7 days were 9.01 ± 0.39 U/g and 4.22 ± 0.15 U/g, respec-
tively (Fig. 1). This suggested that both enzymes generated 
by the fungi were included in the breakdown of the banana 
peel and the subsequent release of simple sugars, such as 
glucose and xylose, which were immediately assimilated 
by the fungi for growth and pigment production. Xylanase 
stimulated the degradation of the cellulose by generating 
small holes of xylanase that covered the cellulose, and cel-
lulase subsequently promoted the hydrolysis of the cellulose 
after being accessed through the pores [30]. This indicated 
that synergism between xylanase and cellulase enhanced the 
production [31]. However, a decline in both activities gener-
ally caused the secretion systems of the enzyme inactiva-
tion due to the depletion of cellulase and xylanase, which 
were fermentable substrate [10]. Accordingly, Jampala et al. 
[10] reported that the activities of xylanase and cellulase 
of Trichoderma reesei NCIM 1186, cultivated in Prosopis 
juliflora pods, reached the highest levels in six days and then 
declined thereafter.

Effect of the initial moisture

The moisture content of the substrate was a significant 
operating factor affecting the solid-state fermentation 
process of pigment and enzyme production by fungi 
because it impacted oxygen transfer, heat exchange, and 
mass transfer. The unsuitable moisture content of the 
substrates resulted in a reduction or increment of these 
impacted factors leading to an improper condition for the 
growth and formation of the secondary metabolites [32, 
33]. Commonly, the optimal initial moisture of fungi to 
obtain production was in the range of 40–60% [33–35]. 
In this study, the initial moisture was varied at 40%, 50%, 
and 60% in order to investigate the impact of this factor on 
the production of the pigments and activities of xylanase 
and cellulase of the selected fungi, M. purpureus TISTR 

3385. Obviously, the production of the pigments and both 
enzymes was significantly influenced by the initial mois-
ture content (Fig. 2 and Table 1). By setting up the initial 
moisture of 40%, the pigments were remarkably produced, 
especially the yellow pigment that was obtained by a high 
level (6.5 UA/g) (Fig. 2a). In addition, the pigment pro-
ductivity was obtained with a significant difference among 
all the conditions tested (P < 0.05) (Table 1). Dissimilarly, 
Velmurugan et al. [36] reported the potential of corn cob 
powder for pigment production by M. purpureus KACC 
42,430. The pigment yield of 25.42 UA/g was obtained 
at the optimal moisture content of 60%. Haque et al. [37] 
reported utilizing bakery waste as a fermentable substrate 
for the production of pigments by M. purpureus ATCC 
16,365. The highest pigment yield and the highest activity 
of glucoamylase and protease were obtained at the opti-
mal moisture content of 55% and 65%. Zhang et al. [38] 
reported using millet as feedstock for monacolin K pro-
duction by M. ruber. At the initial moisture of 55%, the 
production obviously increased, whereas the initial mois-
ture further increased to 60%, and the production began 
to decline. These indicated that the optimal moisture con-
tent depended on the strains of the Monascus species and 
the substrate, which had differences in the water hold-
ing capacity affecting the water activity-Aw, and also its 
change during fermentation [39]. Regarding the xylanase 
and cellulase activities, at the initial moisture of 40%, the 
profiles of both enzymes were presented at a high and 
stable activity during 7 days of fermentation (Fig. 2a). 
On the contrary, at the initial moisture of 50% and 60%, 
both enzyme activities rapidly increased and gained the 
highest level at 7 days (Fig. 2b and c). This was probably 
because the free water availability within the substrate 
particles slightly evaporated, thus causing the particles 
to have porosity, and thereby increasing the oxygen trans-
fer leading to promoting favorable conditions for enzyme 
activity [34].

Fig. 2  Effect of the initial moisture at 40% (a), 50% (b), and 60% (c) 
on the pigment production, the xylanase and cellulase activities by M. 
purpureus TISTR 3385 cultivated on an SBP dry mill at an initial pH 

of 6.0. The data are presented as the mean of triplication and standard 
deviation
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Effect of the initial pH

The pH was a vital factor for pigment and enzyme pro-
duction because it affected the metabolic activity of many 
enzymes and the transport of numerous nutrient composi-
tions from the substrate into the cell by the fungi [40]. 
The optimal pH of the substrate by various fungi including 
Monascus species was within the range of 5–7 [41–44]. In 
the study, the initial pH was varied at 5.0, 6.0, and 7.0 in 
order to investigate the impact of this factor on the produc-
tion of the pigments and activities of xylanase and cel-
lulase of the selected fungi, M. purpureus TISTR 3385. 
Obviously, the production and productivity of the pigments 
were significantly affected by the initial pH of the substrate 
but not for both enzyme activities (Fig. 3 and Table 1). 
The initial pH of 5.0 provided the highest pigment produc-
tion with a significant difference in productivity among the 
three conditions tested (P < 0.05) (Fig. 3a and Table 1). 
The pigment production was relatively negatively-affected 
by the initial pH of 4.0 and 7.0 (Fig. 2b and c). Similarly, 
from a previous study regarding the optimal pH for pig-
ment production, Jun et al. [25] reported that Monascus 
yellow pigments were obtained at a pH of 5.0. Likewise. 

Embaby et al. [45] reported that the highest significant lev-
els of the pigments were achieved at a pH of 5.0. On the 
other hand, the profiles of both enzymes were similar in 
all conditions, which were presented in high and relatively 
stable activity during 7 days of fermentation and declined 
at 10 days (Fig. 3). Similarly, in a previous study regarding 
the optimal pH for pigment production and enzyme activ-
ity, Subsaendee et al. [46] reported that the initial neutral 
pH affected pigment synthesis, but the lower pH was an 
optimal condition for glucoamylase activity. Zhang et al. 
[47] also reported that the optimal pH for growth and pig-
ment production was obtained at a pH of 5.0, but high 
levels of ligninase and xylanase activities were obtained 
at a pH of 7.0 through 9.0.

Effect of sterile and non‑sterile Saba banana peel

Non-sterile fermentation provides many advantages com-
pared to a sterile form, including involving elimination of the 
sterile step, reduction of the maintenance requirements, sim-
ple process for the bioreactor design, and simple process for 
the operation [48]. In the case of producing a microbial lipid 
with a plant capacity of 10,000 tons, the cost for sterilization 

Fig. 3  Effect of the initial pH at 5.0 (a), 6.0 (b), and 7.0 (c) by M. purpureus TISTR 3385 cultivated on an SBP dry mill at 40% of the initial 
moisture. The data are presented as the mean of triplication and standard deviation

Fig. 4  Effect of sterile SBP 
(a) and non-sterile SBP (b) on 
the pigment production, the 
xylanase and cellulase activities 
by M. purpureus TISTR 3385 
cultivated on an SBP dry mill at 
40% of the initial moisture and 
initial pH of 6.0. The data are 
presented as the mean of tripli-
cation and standard deviation



98 Brazilian Journal of Microbiology (2023) 54:93–102

1 3

Ta
bl

e 
2 

 T
he

 e
ffi

ci
en

cy
 o

f p
ig

m
en

t p
ro

du
ct

io
n 

by
 M

. p
ur

pu
re

us
 T

IS
TR

 3
38

5 
in

 v
ar

io
us

 c
on

di
tio

ns

nd
  is

 n
ot

 d
et

ec
t. 

Th
e 

da
ta

 a
re

 p
re

se
nt

ed
 a

s t
he

 m
ea

n 
of

 tr
ip

lic
at

io
n 

an
d 

st
an

da
rd

 d
ev

ia
tio

n.
P Y

, y
el

lo
w

 p
ig

m
en

t p
ro

du
ct

iv
ity

; P
O

, o
ra

ng
e 

pi
gm

en
t p

ro
du

ct
iv

ity
; P

R,
 re

d 
pi

gm
en

t p
ro

du
ct

iv
ity

; Y
p/

s, 
yi

el
d 

of
 p

ig
m

en
t p

ro
du

ct
io

n 
pe

r g
ra

m
 s

ub
str

at
e;

 Y
P,

 y
el

lo
w

 p
ig

m
en

t; 
O

P,
 o

ra
ng

e 
pi

gm
en

t; 
RP

, r
ed

 p
ig

m
en

t; 
U

A/
g,

 u
ni

t o
f a

bs
or

ba
nc

e 
pe

r g
ra

m
 su

bs
tra

te
; U

/g
, u

ni
t p

er
 g

ra
m

 su
bs

tra
te

; U
A/

g/
d,

 u
ni

t o
f a

bs
or

ba
nc

e 
pe

r g
ra

m
 su

bs
tra

te
 p

er
 d

ay
.

C
on

di
tio

ns
Y

p/
s f

or
 Y

P 
(U

A
/g

)
Y

p/
s f

or
 O

P 
(U

A
/g

)
Y

p/
s f

or
 R

P 
(U

A
/g

)
P Y (U

A
/g

/d
)

P O (U
A

/g
/d

)
P R (U

A
/g

/d
)

Re
fe

re
nc

es

Su
bm

er
ge

d 
fe

rm
en

ta
tio

n
C

ul
tu

re
: 2

50
-m

L 
fla

sk
M

ed
iu

m
: M

od
ifi

ed
 Y

ea
st 

M
al

t 
Ex

tra
ct

 (Y
M

)
C

on
di

tio
n:

 2
50

 rp
m

, p
H

 4
.5

, 3
0 

°C

-nd
-nd

 ~
 1.

7
-nd

-nd
0.

67
[5

4]
W

on
ga

nu
 &

 K
on

gr
ua

ng
 

(2
01

0)

C
ul

tu
re

: 5
-L

 S
tir

re
d 

ta
nk

 b
io

re
ac

-
to

r
M

ed
iu

m
: Y

ea
st 

M
al

t E
xt

ra
ct

 (Y
M

)
C

on
di

tio
n:

 m
ai

nt
ai

ne
d 

pH
 a

t 7
.0

, 
30

 °C
,

A
er

at
io

n 
at

 1
.3

8 ×
  10

5  N
/m

2 ,
A

gi
ta

tio
n 

at
 1

00
 rp

m

4.
52

5.
49

5.
34

66
.2

8
80

.2
0

77
.9

8
[5

9]

So
lid

 st
at

e 
fe

rm
en

ta
tio

n
C

ul
tu

re
: 2

50
 m

L 
w

id
e 

m
ou

th
 

cy
lin

dr
ic

al
 b

ot
tle

M
ed

iu
m

: s
te

ril
e 

SB
P,

 C
on

di
tio

n:
 

40
%

 m
oi

stu
re

, p
H

 6
.0

, 3
0 

°C

6.
52

 ±
 0.

35
3.

42
 ±

 0.
18

2.
78

 ±
 0.

05
0.

93
 ±

 0.
03

0.
47

 ±
 0.

01
0.

40
 ±

 0.
03

Th
is

 st
ud

y

C
ul

tu
re

: 2
50

 m
L 

w
id

e 
m

ou
th

 
cy

lin
dr

ic
al

 b
ot

tle
M

ed
iu

m
: n

on
-s

te
ril

e 
SB

P,
 C

on
di

-
tio

n:
 4

0%
 m

oi
stu

re
, p

H
 6

.0
, 

30
 °C

6.
01

 ±
 0.

22
3.

09
 ±

 0.
06

2.
70

 ±
 0.

08
0.

86
 ±

 0.
02

0.
44

 ±
 0.

04
0.

39
 ±

 0.
01

Th
is

 st
ud

y



99Brazilian Journal of Microbiology (2023) 54:93–102 

1 3

accounted for 1.4% and 4% of the total utility cost, and the 
installed cost fee, respectively [49]. Moustogianni et al. [50] 
found that the total utility cost was saved by 4.6 times with 
non-sterile fermentation. Thus, non-sterile fermentation 
could be a practical approach for the production of pigments 
and lignocellulosic enzymes by M. purpureus TISTR 3385. 
In this study, fermentation using the sterile and non-sterile 
SBP dry mill was investigated. Fortunately, the fermenta-
tion using the sterile and non-sterile SBP dry mill did not 
display any significant difference in the production of the 
pigments and the activities of xylanase and cellulase by M. 
purpureus TISTR 3385 (Fig. 4 and Table 1). The production 
of the pigment and both enzymes was stable and continued 
for 7 days with a significant amount and declined at 10 days 
(Fig. 4). The highest number of pigments obtained by the 
fermentation of the non-sterile SBP dry mill was achieved 
in the range of 2.70–6.01 UA/g (Fig. 4b). Commonly, non-
sterilized peels harbor various kinds of microbial diversity. 
Banana peel consisting of bacterial phyla, mainly composed 
of Proteobacteria, Actinobacteria, and Bacilli, is almost 
twice more abundant than that of fungal phyla [51]. How-
ever, the pigment productivity was obtained with a signifi-
cant difference among all the conditions tested (P < 0.05) 
(Table 1). Regarding both enzyme activities, the highest 
xylanase and cellulase activities obtained by the fermenta-
tion of the non-sterile SBP dry mill were 8.92 ± 0.46 U/g 
and 4.72 ± 0.04 U/g, respectively (Fig. 4b). Accordingly, in 
a previous study regarding non-sterile fermentation, Vasco-
Correa et al. [52] reported that non-sterile miscanthus was 
pretreated by the fungus Ceriporiopsis subvermispora for 
enzymatic hydrolysis. The enzymatic digestibility was sig-
nificantly achieved 3- to fourfold. Moreover, Yafetto [53] 
reported that the protein concentration of the sterile and 
non-sterile cassava pulp fermented by Aspergillus niger did 
not have a significant difference and increased by 22.61% 
and 21.54%, respectively. Pan et al. [54] also reported that 
sterile and non-sterile cultivation for the fibrinolytic enzyme 
by Bacillus subtilis was similar in the trends, but the highest 
activity of fibrinolytic obtained in the non-sterile cultivation 
(3129 U/mL) was rather higher than that of sterile cultiva-
tion (2906 U/mL).

Pigment‑producing efficiency of Monascus purpureus 
TISTR3385

Submerged fermentation offered advantages, such as better 
monitoring and simplified handling [55], while; solid-state 
fermentation provided benefits, such as better process control, 
lower chances of contamination, and simplified downstream 
processing [56]. Traditionally, pigment produced by the Monas-
cus species was performed under solid-state fermentation; how-
ever, it was recently performed under submerged fermentation 
[57]. Table 2 shows the efficiency of the pigment production 

by M. purpureus TISTR3385 through submerged fermenta-
tion and solid-state fermentation. Under submerged fermenta-
tion, Wonganu and Kongruang [58] revealed the production 
of the red pigment by M. purpureus TISTR 3385 cultivated 
on a small scale using modified yeast malt extract compared 
with M. purpureus TISTR 3002 and M. purpureus TISTR 
3180. The red pigment produced by the fungi was obtained 
at a high production of 1.7 UA/g corresponding to its pro-
ductivity of 0.67 UA/g/d, which was 1.18-fold and 1.68-fold 
higher than that produced by M. purpureus TISTR 3002 and 
M. purpureus TISTR 3180, respectively (data not shown). In 
addition, Kongruang [59] revealed that the pigment production 
by M. purpureus TISTR 3385 in a 5-L stirred tank bioreactor 
was compared with M. purpureus TISTR 3002, M. purpureus 
TISTR 3180, and M. purpureus TISTR 3090. Among all strains 
investigated, M. purpureus TISTR 3385 provided various pig-
ments comprising yellow, orange, and red at the highest levels. 
The orange (5.49 UA/g) and red pigments (5.34 UA/g) were 
predominant, followed by the yellow pigment (4.52 UA/g). The 
orange pigment yield was 15, 5, and 2 times higher than that 
of M. purpureus TISTR 3002, M. purpureus TISTR 3180, and 
M. purpureus TISTR 3090. In this study, the fermentation with 
sterile and non-sterile SBP was performed by M. purpureus 
TISTR 3385. The trends of the pigment production under 
both conditions were similar and also obtained at high levels. 
These indicated the potential of M. purpureus TISTR 3385 as 
pigment-producing fungi due to its ability to produce pigment 
in various substrates, including synthetic media and waste or 
residues under submerged fermentation or solid-state fermenta-
tion with or without sterile conditions.

Conclusion

This study showed that Saba banana peel could serve as a 
low-cost fermentable substrate for the production of pig-
ments, xylanase and cellulase enzymes by both kinds of M. 
purpureus: M. purpureus TISTR 3385 and M. purpureus 
TISTR 3615. The moisture and pH of the substrate had 
impacts on the conversion of the waste by the fungi into 
the products, particularly for the pigments. Yellow pigment 
was predominant, followed by the orange and red pigments, 
respectively. In addition, fermentation using non-sterile peel 
was effective as well as the sterile one, which indicated a 
practical platform for eco‐friendly pigment production.
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